Химия радиоматериалов |
Тема IV. Магнитные материалы |
4.3. Классификация магнитных материалов
Согласно поведению в магнитном поле все магнитные материалы делятся на две основные группы – магнитно-мягкие (МММ) и магнитно-твердые (МТМ). МММ характеризуются большими значениями начальной и максимальной магнитной проницаемостью и малыми значениями коэрцитивной силы (меньше 4000 А/м). Они легко намагничиваются и размагничиваются, отличаются малыми потерями на гистерезис.
Чем чище МММ, тем лучше его магнитные характеристики.
МТМ обладают большой коэрцитивной силой (больше 4000А/м) и остаточной индукцией (больше 0.1 Тл). Они с большим трудом намагничиваются, но зато могут долго сохранять магнитную энергию, т.е. служить источниками постоянного магнитного поля.
По составу все магнитные материалы делятся на
Металлические магнитные материалы это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.
Неметаллические магнитные материалы – ферриты, получаемые из порошкообразной смеси окислов железа и окислов других металлов. Опрессованные ферритовые изделия подвергаются отжигу, в результате чего они превращаются в твердые монолитные детали.
Магнитодиэлектрики представляют собой композиционные материалы, состоящие из 60-80% порошкообразного магнитного материала и 40-20% диэлектрика.
Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими ρ(102-108 Ом·м), от чего потери на вихревые токи малы. Это позволяет использовать их в высокочастотной технике. Кроме того, ферриты обладают большой стабильностью магнитных параметров в широком диапазоне частот (включая СВЧ).
4.4. Металлические магнитно-мягкие материалы
Основными магнитно-мягкими материалами, применяемыми в радиоэлектронной аппаратуре, являются карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.
Представляет собой тонкодисперсный порошок, состоящий из частиц сферической формы диаметром 1 – 8 мкм.
μн
= 2500 – 3000
μм = 20000
– 21000
Нс = 4.5 – 6.2
А/м
Его применяют при изготовлении высокочастотных магнитодиэлектрических сердечников.
Пластичные железоникелевые сплавы с содержанием никеля 45 – 80%, легко прокатываются в тонкие листы и ленты, толщиной до 1 мкм. При содержании никеля 45 – 50% называются низконикелевыми, 60 – 80% - высоконикелевыми.
μн
= 2000 – 14000
μм = 50000
– 270000
Нс = 2 – 10 А/м
ρ = 0.25 – 0.45 мкОм·м
Для улучшения магнитных характеристик в пермаллои вводят молибден, хром, кремний или медь, отжигают в водороде или вакууме.
Легированные пермаллои применяют для деталей аппаратуры, работающих на частотах 1 – 5 МГц. В магнитных усилителях применяют пермаллои с прямоугольной петлей гистерезиса.
Представляют собой нековкие, хрупкие сплавы, состоящие из 5.5 – 13% алюминия, 9 – 10% кремния, остальное – железо.
μн
= 6000 – 7000
μм = 30000
– 35000
Нс = 2.2 А/м
ρ = 0.8 мкОм·м
Из него изготовляют литые сердечники, работающие в диапазоне до 50 кГц.
4.4.4. Низкоуглеродистые кремнистые стали
Представляют собой сплавы железа с 0.8 – 4.8% кремния, содержание углерода не более 0.08%. Это сравнительно дешевый материал. Введение большого количества кремния улучшает магнитные свойства материала, но повышает его хрупкость (поэтому кремния не более 4.8%).
Листы кремнистой стали изготавливают прокаткой заготовок в нагретом и ненагретом состояниях, поэтому различают горячекатанную и холоднокатанную сталь.
Улучшенные магнитные характеристики холоднокатанных сталей наблюдаются только при совпадении направления магнитного потока с напрвлением пркатки. В противном случае свойства горячекатанных сталей выше.
Таблица 4.1.
μн |
μм |
Нс, А/м |
|
Горячекатанная |
300 - 400 |
6000 - 8000 |
31 – 33 |
холоднокатанная |
600 - 900 |
2000 - 35000 |
9.5 – 14 |
Стали применяют в менее ответственных узлах РЭА.
4.5. Металлические магнитно-твердые материалы
По составу, состоянию и способу получения магнитно-твердые материалы подразделяются на:
Характеристиками материалов для постоянных магнитов служат коэрцитивная сила, остаточная индукция и максимальная энергия, отдаваемая магнитом во внешнее пространство. Магнитная проницаемость материалов для постоянных магнитов ниже, чем МММ, причем чем выше коэрцитивная сила, тем меньше магнитная проницаемость.
4.5.1. Легированные стали, закаливаемые на мартенсит
Данные стали являются наиболее простым и доступным материалом для постоянных магнитов. Они легируются вольфрамом, хромом, молибденом и кобальтом. Величина Wм для мартенситных сталей составляет 1 –4 кДж/м3. В настоящее время мартенситные стали имеют ограниченное применение из-за невысоких магнитных свойств, но полностью от них не отказываются, т.к. они дешевы и допускают механическую обработку на металлорежущих станках.
4.5.2. Литые магнитно-твердые сплавы
Большую магнитную энергию имеют тройные сплавы Al-Ni-Fe, которые раньше называли сплавами альни. При добавлении кобальта или кремния в эти сплавы их магнитные свойства повышаются. Недостатком этих сплавов является трудность изготовления из них изделий точных размеров вследствие хрупкости и твердости их, допускающих обработку только путем шлифовки.
Необходимость получения особенно мелких изделий со строго выдержанными размерами обусловила привлечение методов порошковой металлургии для получения постоянных магнитов. При этом различают металлокерамические магниты и магниты из зерен порошка, скрепленных тем или иным связующим (металлопластические магниты).
4.5.4. Пластически деформируемые сплавы и магнитные ленты
К таким сплавам относятся викаллой, кунифе, кунико и некоторые другие. Основные представления об этих сплавах приведены в табл.4.2.
Таблица 4.2.
Марка сплава |
Хим. Состав %, ост. Fe |
Вr, Тл |
Нс,
|
Wм, |
Викаллой I |
51-54
Со |
0.9 |
24 |
4 |
Викаллой II |
51-54
Со |
0.9-0.95 |
30-28 |
8-14 |
Кунифе I |
60Cu,20Ni |
0.54-0.6 |
27-28 |
4-7.4 |
Кунифе II |
50Cu,20Ni 2.5Co |
0.73 |
21 |
2.8-3.2 |
Кунико I |
50Cu,21Ni, 29Co |
0.34 |
53-57 |
3.2-4 |
Кунико II |
35Cu,41Co |
0.53 |
36 |
4 |
Это соединения оксида железа Fe2O3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной смеси оксидов этих металлов.
Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:
Если ZnO – феррит цинка
NiO – феррит никеля.
Ферриты имеют кубическую кристаллическую решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al2O3. Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe2O3, обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn++ или Cd++, магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe+++, материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:
MeOxFe2O3 или MeFe2O4
Феррит цинка – ZnFe2O4, феррит никеля– NiFe2O4.
Не все простые ферриты обладают магнитными свойствами. Так CdFe2O4 является немагнитным веществом.
Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:
mNiO·Fe2O3 + nZnO·Fe2O3 + pFeO·Fe2O3, (4.8)
где коэффициенты m, n и p определяют количественные соотношения между компонентами. Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала.
Наиболее широко в РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.
Достоинства ферритов – стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи, малый коэффициент затухания магнитной волны, а также простота изготовления ферритовых деталей.
Недостатки всех ферритов – хрупкость и резко выраженная зависимость магнитных свойств от температуры и механических воздействий.
Это композиционные материалы, состоящие из мелкодисперсных частиц магнитно-мягкого материала, соединенных каким-либо органическим или неорганическим диэлектриком. В качестве мелкодисперсных МММ применяют карбонильное железо, альсиферы и некоторые сорта пермаллоев. В качестве диэлектрика – эпоксидные или бакелитовые смолы, полистирол, жидкое стекло и др.
Назначение диэлектриков не только в том, чтобы соединять частицы магнитного материала, но и создать между ними электроизоляционные прослойки и тем самым повысить электрическое сопротивление магнитодиэлектрика. Это резко снижает потери на вихревые токи и дает возможность работать на частотах 10 – 100 МГц (в зависимости от состава).
Магнитные характеристики магнитодиэлектриков несколько ниже исходных ферромагнитных наполнителей. Несмотря на это магнитодиэлектрики применяют для изготовления сердечников ВЧ узлов РЭА. Это обусловлено большой стабильностью магнитных характеристик и возможностью изготовления из них сердечников сложной формы. Кроме того, изделия из диэлектриков отличаются высокой чистотой поверхности и точностью размеров.
Лучшие магнитодиэлектрики – с наполнителями: молибденовым пермаллоем или карбонильным железом.