Теория электрических цепей |
Тема 17. Фильтрующие цепи и их синтез |
назад | оглавление | вперёд |
17.1. Классификация фильтров
Электрический фильтр – это устройство, которое практически не ослабляет спектральные составляющие сигнала в заданной полосе частот и значительно ослабляет (подавляет) все спектральные составляющие вне этой полосы. Полоса частот, в которой ослабление мало, называется полосой пропускания. Полоса частот, в которой ослабление велико, называется полосой непропускания (задерживания). Между этими полосами находится переходная область. По расположению полосы пропускания на шкале частот различают следующие фильтры:
На рис. 17.1, а—г показаны также условные обозначения фильтров каждого типа в соответствии с ГОСТ.
В соответствии с используемой элементной базой к настоящему моменту выделились несколько классов фильтров. Исторически первыми (и все еще широко применяемыми) являются пассивные фильтры, содержащие элементы L и С. Они носят название LC-фильтров. Во многих случаях на практике требовалась крайне высокая избирательность (различие ослаблений в полосах пропускания и непропускания в десятки тысяч раз). Это привело к появлению фильтров с механическими резонаторами: кварцевых, магнитострикционных, электромеханических. По-видимому, самые значительные достижения в области теории и проектирования фильтров связаны с успехами микроэлектроники. Требования микроминиатюризации радиоэлектронной аппаратуры заставили отказаться от использования индуктивностей, которые имеют большие габаритные размеры, особенно на низких частотах, и не поддаются исполнению в микроминиатюрном виде. Появились активные RC-фильтры, состоящие из резисторов, конденсаторов и активных приборов (например, транзисторов). Эти фильтры могут быть выполнены в виде микромодульной конструкции или интегральной схемы. Применение активных RC-фильтров ограничивается пока сравнительно небольшим диапазоном частот до десятков (иногда сотен) килогерц. Разработка цифровых систем связи и достижения в области цифровых вычислительных машин стимулировали создание фильтров на базе элементов цифровой и вычислительной техники – цифровых фильтров. В силу специфики элементной базы цифровых фильтров не будем далее упоминать о них, хотя расчет таких фильтров производится методами теории электрических цепей. Заинтересованные читатели могут обратиться к специальной литературе по цифровым фильтрам. В идеальном случае (идеальный фильтр) характеристика рабочего ослабления, например для ФНЧ, имеет вид, показанный на рис. 17.2, а. С рабочим ослаблением связана рабочая амплитудно-частотная характеристика (АЧХ): . На рис. 17.2, б изображена АЧХ идеального фильтра нижних частот.
Реальные фильтры (т. е. фильтры, состоящие из реальных элементов) имеют характеристики рабочего ослабления и амплитудно-частотную, отличные от идеальных. Требования к электрическим характеристикам фильтров задаются в виде допустимых пределов изменения этих характеристик. Так, рабочее ослабление в полосе пропускания не должно превышать некоторого максимального допустимого значения Арmax, а в полосе непропускания не должно быть ниже некоторого минимально допустимого значения Арmin. Нетрудно изобразить эти требования графически, как это сделано на рис. 17.3, а для ФНЧ. На этом рисунке и – граничные частоты полос пропускания и непропускания.
Зная требования к Ар, можно пересчитать их в требования к АЧХ или, как это принято в теории фильтров, в требования к квадрату АЧХ (рис. 17.3, б): Характеристики проектируемых фильтров должны "укладываться" в эти требования (рис. 17.3, а и б). Помимо требований к частотной зависимости рабочего ослабления (а значит, и к АЧХ) могут задаваться также требования к фазочастотной характеристике фильтра (скажем, допустимые отклонения от линейного закона) и величине нелинейных искажений (обусловленных, например, наличием железа в катушках индуктивности). Могут предъявляться требования и к другим характеристикам и параметрам фильтра. Ниже будем учитывать только требования к рабочему ослаблению и АЧХ. Идеальные частотные характеристики фильтра (см. рис. 17.2, а) заведомо нереализуемы. Частотные характеристики реальных фильтров могут лишь приближаться к ним с той или иной степенью точности в зависимости от сложности схемы фильтра. |
назад | оглавление | вперёд