Интегральные и оптические сети |
Тема 3. Сети доступа |
назад | оглавление | вперёд |
3.3.1 Технологии радио доступа Существует несколько видов технологий радио доступа, которые различаются по ряду характеристик. Все абонентские устройства доступа подразделяются на индивидуальные, предназначенные для подключения отдельных абонентов, и коллективные системы, способные обсуживать от десятков до тысяч пользователей. Кроме того, по максимальной дальности связи базовой станции с абонентским блоком (окончанием) в обеих группах различают устройства малого (до 1 км), среднего (1-10 км) и большого (10-100 км) радиуса действия. В отдельную группу нужно выделить средства спутникового радио доступа. К группе индивидуальных средств радио доступа можно отнести радио удлинители телефонного канала, беспроводные телефоны со средним и малым радиусом действия. Для радио удлинителя телефонного канала выделены полосы частот 307,5 - 308 МГц и 343,5 – 344 МГц при ширине канала 25 кГц. Мощность передатчика канала может достигать 10 Вт. При этом обеспечивается дальность до 100 км. Массовое применение радио удлинителей при большой телефонной плотности невозможно из-за больших взаимных помех. Беспроводные телефоны со средним и малым радиусом действия используются в 40 каналах с шагом 25 кГц в полосах частот 814 – 905 МГц. Выбор свободного канала осуществляется автоматически. Мощность разрешенных устройств не превышает 10 мВт. Однако для массовой эти телефоны непригодны из-за больших взаимных помех в ограниченном числе каналов. Системы беспроводного доступа это совокупность средств и возможностей по коммутации услуг. В состав системы радио доступа входят: центральный контроллер; коммутационная станция; стыки с сетью общего пользования; одна или несколько базовых станций радио доступа; абонентские блоки; система управления сетью. Системы радио доступа используются на малых и средних расстояниях. В литературе они получили название Wireless Local loop (WLL).Типовая архитектура системы WLL приведена на рисунке 3.37. Такие системы позволяют обслуживать районы с высокой плотностью терминалов (сотни и тысячи). Рисунок 3.37 Типовая архитектура системы WLL Контроллер базовых станций предназначен для концентрации и возможно коммутации трафика WLL, обработки вызовов и обеспечения связи с коммутаторами сети общего пользования, например, ТФОП (АТС). Связь с сетью общего пользования обеспечивается через интерфейсы (n?E1, V5.x) или многочисленные аналоговые двухпроводные линии. Кроме того, контроллер поддерживает функции через интерфейсы Q2, Q3 и терминал технического обслуживания. Базовые станции WLL осуществляют радиосвязь со стационарными или ограничено мобильными абонентами в пределах своих зон обслуживания, величина которых зависит от используемой в системе радио технологии, и обеспечивает передачу вызовов контроллеру. Базовая станция состоит из антенно-фидерного тракта, одно- или многоканальной приемопередающей аппаратуры, локальной подсистемы управления, коммутационных интерфейсов и системы питания. Абонентские терминалы представляют собой портативные беспроводные трубки, обеспечивающие ограниченную подвижность связи; специальные настольные аппараты с трансивером и антенной и стационарные блоки на одну или более телефонных линий, к которым подключаются телефоны, факсы, модемы. В широкополосных радиосистемах доступа предоставляются услуги ISDN и B – ISDN. Стационарный абонентский терминал может размещаться внутри или снаружи зданий и иметь внешнюю или встроенную антенну, а также резервное питание от батареи. Терминал обслуживания – это персональный компьютер с программными установками по мониторингу и управлению. Необходимо обратить внимание на антенные устройства систем радио доступа. В рамках организации системы беспроводного многоточечного доступа важную роль играют такие факторы, как качество связи, устройство антенн, а также средства планирования и управления сетью. Для таких систем разработаны специальные конструкции антенн, которые не только обладают свойствами гибкости по отношению к системным требованиям, но удовлетворяют и эстетическим запросам. Основным решениям для базовой станции является конструкция антенны, разделенной на сектора обзора с малыми боковыми лепестками диаграммы направленности. Оконечная станция оборудуется антенной, обладающей таким же малым излучением на боковых лепестках и, вместе с тем, высоким усилением, что позволяет свести к минимуму влияние шумовых излучений. Этот принцип совмещается с использованием метода двойной поляризации. Планарные антенны представляют собой простое и экономичное решение, совмещающее модульность структуры и эстетически приемлемый внешний вид. В антеннах, разработанных к настоящему времени, применяются ленточные микроволноводы, что позволяет легко удовлетворять разнообразные запросы потребителей, в частности, по высокому усилению и модульному выбору вариантов секторного обзора с различными углами раскрытия. Отдельные антенны сектора могут крепиться отдельно друг от друга (например, на стенах зданий). На рисунках 3.38, 3.39 показаны примеры типовых решений по секторизации ячеек обслуживания. Рисунок 3.38 Пример разбиения на секторы с одинаковыми углами раскрытия Рисунок 3.39 Пример разбиения на секторы с разными углами раскрытия В каждом из секторов в зависимости от его величины, полосы частот, кодирования возможно подключения различного числа абонентов. По указанным характеристикам и стоимости одного окончания могут сравниваться различные WLL между собой. Как правило, системы радио доступа делаются многоточечными и базовые станции размещаются в центре зон обслуживания. Например, система DMS (Digital Multipoint System) компании Bosch поддерживает топологию “точка – много точка” с возможностью охвата зоны действия на местности, где располагаются узлы связи. Для достижения максимальной пропускной способности зона действия (ячейка) делится на сектора обзора с углами 90о, 45о и 15о (рисунок 3.40). Рисунок 3.40 Пример образования секторов радио доступа Обозначено на рисунке 3.39: RNU – Radio Network Unit – сетевой радиоблок; CRS – Central Radio Station – базовая радиостанция. Пропускная способность системы радио доступа зависит от выбора режима работы:
В случае DBA каждая связь индивидуально адаптируется к текущему трафику на локальном терминале. Поэтому удается создавать существенно большее число каналов (беспроводная концентрация трафика). Алгоритмы управления DBA исключают блокировку вызова от абонента, пока в полосе частотного канала существуют свободные номиналы рабочей частоты. Каждая DBA процедура непосредственно связана со сменой пары несущих частот и под новые каналы отводятся свободные полосы частот в пределах общей рабочей полосы конкретного сектора CRS.
Все эти методы применяются в системах радио доступа и имеют свои достоинства (преимущества) и недостатки. Ниже приведены ряд соотношений, которые указывают на сравнительные возможности методов разделения радиоканалов. • Метод FDMA позволяет обеспечить высокие битовые скорости связи с абонентами. В принципе нет каких-либо ограничений на пропускную способность и битовую скорость связи. • Метод FDMA позволяет оптимизировать каждое соединение индивидуально, независимо от других каналов радиосвязи. • Метод FDMA обеспечивает наиболее гибкий способ оперативной оптимизации любой отдельной связи в отношении частотных характеристик, битовой скорости, модуляции, мощности сигнала и исправления ошибок. • Во взаимодействии с технологией динамического распределения частотного диапазона DBA (Dynamic Bandwidth Allocation) метод FDMA способен наиболее экономичным образом разрешить проблему связи с малой битовой скоростью (например, канал 1 x 64 кбит/с до каждого клиента). • Цифровой метод FDMA проверен на практике и доказал свою эффективность в отношении быстрого развития и внедрения на рынке. • TDMA базируется на технологии FDMA, но каждый частотный канал дополнительно делится на несколько временных интервалов (тайм - слотов).Каждому абоненту выделяется один тайм – слот. TDMA является основой GSM (Global System for Mobile). • В применениях с радиосвязью в зоне прямой видимости (LOS – Line of Sight), где необходимо учитывать интерференционные помехи по частотам, метод FDMA имеет преимущество по сравнению с методом TDMA,так как каждому пользователю выделяется лишь малая часть полосы пропускания. • Ошибки синхронизации менее критичны для метода FDMA по сравнению с технологией TDMA (множественный доступ с временным разделением каналов). • В методе CDMA всеми абонентами сети используется общая полос частот. Разделение сигналов производится с помощью специальной кодовой комбинации, которая добавляется к информационному сигналу. • Несмотря на то, что методу CDMA присущ эффект подавления входных сигналов малой амплитуды (despreading), что позволяет уменьшить мощность сигнала за счет снижения уровня помех, этот метод не выгоден в условиях, когда необходимы высокие битовые скорости передачи, так как для реализации данного эффекта нужно слишком широкие полосы пропускания. • Метод CDMA развивается и прошел на этом пути ряд этапов стандартизации:
• Метод FDMA/DBA/FBA может быть использован для передачи данных на скоростях от 2,048 Мбит/с до 155 Мбит/с в сетях B-ISDN на основе АТМ. Эффективное использование спектра частот радио доступа связано не только с методом разделения каналов, но и обусловлено методом модуляции несущих радиочастот. В системах радио доступа нашли применение следующие виды модуляции [35,51]: GFSK, QPSK (Q – 4, 8, 16), DQPSK и т.д. Для широкого использования систем радио доступа в мире разрабатываются и применяются стандарты. Ниже кратко приводятся в качестве примера характеристики двух стандартов. Стандарт DECT (Digital Enhanced Cordless Telecommunications) представляет собой технологию радио доступа с малой мощностью излучения. Был разработан в середине 90х годов в ETSI. Стандартом определены три основные сферы применения: цифровые телефоны для дома и офиса; микросотовые системы для учреждений; системы радио доступа WLL. Стандартом предусмотрено 10 частотных каналов в диапазоне 1880-1900 МГц. Общее число дуплексных каналов – 120, модуляция GMSK, кодирование AДИКМ 32 Кбит/с, измеряемая мощность (средняя)10 мВт, метод доступа FDMA/TDMA и дуплекс с разделением во времени. Радиочастотные каналы располагаются через 1728 кГц. На каждом канале может вестись до 12 телефонных разговоров одновременно, но в разные временные интервалы. Подробные сведения о DECT приведены в [35, 50]. Стандарт CT2/CAI определяет работу в диапазоне 864,1 – 868,1 МГц при многостанционном доступе FDMA с дуплексом и разносом каналов 100 кГц. Суммарные скорости передачи на несущую 72 кбит/с. Число речевых каналов – 40. Кроме того, ранее были уже приведены обозначения стандартов на базе СDМА. В таблице 3.9 приведены некоторые характеристики систем радио доступа. Таблица 3.9 Характеристики систем радио доступа |
назад | оглавление | вперёд