Математика   

Тема 10. Дифференциальные уравнения

назад | оглавление | вперёд

 

10.1. Понятие о дифференциальном уравнении. Общее и частное решение уравнения. Задача Коши

Дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию и её производные.

Общий вид ,

  где n - порядок старшей производной, который определяет порядок дифференциального уравнения.

Решением дифференциального уравнения является всякая функция, которое превращает уравнение в тождество.

Примеры:

Общее решение - это решение, зависящее от произвольных констант или совокупность всех частных решений. Частное решение - это решение при фиксированном значении произвольных констант. Общий интеграл дифференциального уравнения:

Пример:

- дифференциальное уравнение в дифференциалах.

или

- общий интеграл.

Задача Коши. Начальные условия: и

Частное решение дифференциального уравнения должно удовлетворять и тому и другому условию.


назад | оглавление | вперёд