Приборы СВЧ и ОД |
Глава 5. Полупроводниковые приборы и транзисторы СВЧ. |
назад | оглавление | вперёд |
5.5 Биполярные СВЧ транзисторы Граничная частота. Частотные свойства транзисторов обычно характеризуются граничной частотой fгр, которая связана со временем задержки сигнала τ от эмиттера до коллектора: fгр =1/2πτ (5.1) Время задержки τ = τэ.п+ τб + τк.п+ τк, (5.2) где τэ.п — время зарядки емкости эмиттерного перехода; τб — время пролета носителей заряда через базовую область; τк.п — время задержки в коллекторном переходе, связанное с временем пролета; τк — время зарядки емкости коллекторного перехода. Уменьшение ширины базовой области примерно до 0,1 мкм снижает τб до единиц пикосекунд. В этом случае граничная частота в основном будет определяться τэ.п и τк.п, которые примерно равны 10 пс. Поэтому для увеличения fгр необходимо выдвигать дополнительные требования: уменьшение емкости эмиттерното перехода Сэ.п, ширины коллекторного перехода dк и сопротивления коллекторной области rк, влияющего на значение τ к. Однако требования, предъявляемые к СВЧ транзисторам, противоречивы. Например, повышение концентрации примеси, необходимое для уменьшения ширины коллекторного перехода (уменьшения dк), приводит к росту емкости этого перехода. Уменьшение площади перехода для снижения его емкости будет сопровождаться падением мощности транзистора. Необходимого уменьшения величин rк и dк можно добиться повышением концентрации примеси, но при это τ м произойдет сужение коллекторного перехода, увеличится емкость, а кроме того, снизится напряжение пробоя и выходная мощность. Таким образом, повышение граничной частоты биполярного транзистора сопровождается падением мощности и важнейшим ограничением является напряжение пробоя коллекторного перехода, которое зависит и от выбора полупроводникового материала. Рассмотрим предельный случай, когда граничная частота определяется только временем задержки сигнала в коллекторном переходе τк.п, т. е. fгр =1/2π τк.п (5.3) Доказано, что τк.п примерно равно половине времени пролета носителей в коллекторном переходе (τк.п ≈ τпр/2). Дрейфовая скорость при увеличении напряженности поля сначала возрастает линейно, а затем стремится к предельному значению, называемому скоростью насыщения vн. Эта зависимость скорости от напряженности доля объясняется в § 7.1. Скорость vн определяется материалом полупроводника и типом носителей заряда (электрон, дырка). Так как дрейфовая скорость носителей в переходе не может превышать значения vн, то минимальное время пролета τпр=dк /vн а максимальная граничная частота (5.3) fгр = vн /π dк (5.4) Предположим, что поле Е в переходе однородное, а его значение, соответствующее началу пробоя, Епpoб. Тогда напряжение на переходе в начале пробоя Uпpoб ≈ Епpoб dк и (6.4) преобразуете к виду fгр Uпpoб ≈ Епpoб vн /π (5.5) Максимальная напряженность поля Епpoб и Uпpoб, связанные между собой, зависят от концентрации примеси и формы перехода. С ростом концентрации Епpoб увеличивается, а Uпpoб уменьшается. При увеличении концентрации примеси в резком переходе от 1014 до 1017 см -3 Епpoб изменяется в следующих пределах: у германия (1,5 — 3,1)•106 В/см, у кремния (3 — 6)•106 В/см, а у арсенида галлия (3,5—6,5)•106 В/см. Таким образом, Епpoб и Uпpoб у Si и GaAs почти одинаково и в 1,5 — 2 раза больше, чем у Ge. Скорость насыщения vн для электронов и дырок соответственно в Ge 6•106 и 8•106 см/с, в Si примерно равны 107 см/с, в GaAs — около 9•106 см/с. Произведение (5.5) составит для Ge, Si и GaAs примерно 200, 400 и 450 ГГц•B соответственно. Эти результаты можно заменить одним условием, ограничивающим частоту fгр: fгрUпpoб ≤ 200ГГц•В. При минимальном напряжении пробоя 2 В частота fгр ≈ 100 ГГц. Однако этот результат не может быть получен, так как в переходе значение поля не постоянно, а скорость не везде равна скорости насыщения. Кроме того, существуют конструктивные и технологические ограничения. Поэтому считают, что fгр. max ≈ 20 ГГц. Влияние уровня инжекции на граничную частоту. На пути создания транзисторов с узкой базой имеются ограничения, связанные с большой плотностью тока в мощных транзисторах. Одно из них состоит в том, что при большой плотности тока эмиттера возрастает напряжение, создаваемое базовым током на сопротивлении узкой базовой области (рис. 5.4). Если базовый электрод окружает эмиттер, то прямое напряжение на переходе в центре эмиттера, расстояние I от которого до базового электрода наибольшее (базовое сопротивление максимально), оказывается меньше, чем на периферии эмиттера. Поэтому ток в переходе будет существовать по периметру (эффект оттеснения тока эмиттера к периферии эмиттера). В этом случае площадь эмиттера используется неэффективно, в то время как емкость перехода определяется полной площадью. Таким образом, в мощных транзисторах целесообразно использовать очень узкие эмиттеры с большим общим периметром. Ширина эмиттерных полосок при плотности тока примерно 1000 А/см2 выбирается порядка нескольких микрометров. Еще одним ограничением при создании узкой базы в транзисторах с большой плотностью тока является смещение границы базовой области в сторону коллекторной области. При большой плотности тока в pnp-транзисторе концентрация дырок в коллекторном переходе становится сравнимой с концентрациями донорной и акцепторной примесей. В сечении, где распределение объемного заряда в переходе проходило ранее через нуль, теперь будет существовать положительный заряд дырок. Это означает, что весь коллекторный 'переход сместился в сторону коллекторной области, т. е. увеличилась ширина базовой области. Последнее приводит к росту рекомбинации инжектированных дырок в базовой области, снижению коэффициента передачи тока и уменьшению граничной частоты fгр вследствие роста времени пролета носителей в базовой области. При большой плотности тока приходится также учитывать влияние сопротивления коллекторной области, так как обычно последняя является высокоомной и изготавливается путем эпитаксиального наращивания n-слоя на низкоомной подложке (n+-область). На рис. 6.5 показано типичное распределение концентрации основных носителей заряда в транзисторе с высокоомной коллекторной областью, которая необходима для уменьшения емкости коллекторного перехода и повышения напряжения пробоя. Однако с ростом коллекторного тока увеличивается падение напряжения на сопротивлении эпитаксиальной коллекторной n-области и напряжение на самом переходе уменьшается. Это вызовет уменьшение ширины коллекторного перехода, т. е. нежелательное расширение базовой области. При некотором токе коллектора напряжение на переходе пройдет через нулевое значение и транзистор из активного (усилительного) режима перейдет в режим насыщения. Технологические ограничения. Формула (5.5) устанавливает для граничной частоты теоретический предел, который пока не достигнут. При выборе полупроводникового материала предпочтение отдается кремнию по технологическим соображениям. Главное преимущество кремния состоит в том, что появляющаяся на нем двуокись кремния может использоваться как маска в процессе диффузии примесей или как изолирующее диэлектрическое покрытие. Окислы германия и арсенида галлия менее стабильны, чем двуокись кремния. Важными электрофизическими свойствами полупроводников, определяющими параметры транзистора, являются подвижность электронов и дырок, диэлектрическая постоянная и теплопроводность. Подвижность определяет время пролета носителей, в базе и сопротивления областей базы и коллектора. Чем меньше эти величины, тем выше коэффициент усиления и меньше коэффициент шума транзистора на СВЧ. В GaAs подвижность электродов примерно в 4 раза больше, чем в кремнии, и поэтому GaAs является более предпочтительным материалом. Однако из-за технологических трудностей он не получил применения в биполярных транзисторах. Диэлектрическая постоянная, влияющая на емкость переходов составляет для кремния, арсенида галлия и германия 11,7; 11,1 и 16 соответственно. Но по теплопроводности кремний в 2 раза превосходит GaAs и поэтому обычно используется для изготовления мощных транзисторов. Сравнивая же кремний и германий, следует отметить такие преимущества кремния, как более высокая скорость насыщения электронов и большая напряженность поля пробоя. Технология изготовления приборов на основе кремния хорошо разработана и позволяет создавать СВЧ транзисторы с высоким процентом выхода годных и с хорошей надежностью. Глубину диффузии примесей (мышьяка, фосфора и бора) в кремнии можно контролировать при планарной технологии с точностью 0,1 мкм, а достижимые на практике уровни легирования оказались особенно удобными для создания кремниевых nрn -транзисторов. Выполняются СВЧ транзисторы по планарной технологии таким образом, чтобы отношение периметра эмиттера к его площади было наибольшим. Последнее достигается в транзисторе с гребенчатой и многоэмиттерной структурами и в многоструктурных транзисторах. В гребенчатой структуре (рис. 6.6 а) чередуются эмиттерные и базовые области, имеющие форму узких полосок. В многоэмиттерной структуре (ряс. 5.6 б) вместо каждой эмиттерной полосковой области используется ряд небольших прямоугольных эмиттеров, соединенных металлическими полосками. Между эмиттерами находятся полосковые выводы от общей базовой области. Применяются также многоструктурные транзисторы, которые по существу являются объединением ряда многоэмиттерных или гребенчатыхсекций. а) б) Рис. 5.6 Отношение периметра к площади эмиттера с гребенчатой структурой доходит до 250 мм/мм2. Дальнейшее увеличение отношения требует изготовления полосок с шириной менее 1 мкм. Для СВЧ транзисторов большое значение имеет точность воспроизведения элементов — ширины эмиттерных полосок, расстояния между эмиттерными и базовыми полосками, коллекторных площадок. Максимальная разрешающая способность при фотолитографии соответствует получению ширины эмиттерных полосок 1 мкм. Для воспроизведения меньших размеров следует применять электронно-лучевую литографию. Вследствие меньшей длины волны электронного излучения можно получить полоски и промежутки с разрешением 0,1 мкм, что позволяет повысить рабочую частоту транзистора. Для мощных СВЧ транзисторов важной является задача равномерного распределения тока и теплоотвода. В этих транзисторах наблюдается вторичный пробой (первичным называют пробой коллекторного перехода при обратном напряжении эмиттерного перехода) - Вторичный пробой может следовать за первичным, но может возникать самостоятельно при прямом включении эмиттерного перехода. Вторичный пробой коллекторного перехода связан с перераспределением тока в сечении прибора и его концентрацией в локальных областях. Вторичный пробой характеризуется резким увеличением коллекторного тока и, как правило, приводит к выходу прибора из строя из-за образования локальных областей перегрева. В случае прямого включения эмиттерного перехода перераспределение тока может быть связано с оттеснением тока эмиттера к периферии, с неравномерностью инжекции, вызванной неодинаковостью падения напряжения на различных эмиттерных полосках или наличием дефектов структуры. Применение гребенчатой и многоэмиттерной структур обеспечивает и равномерность распределения тока. Однако для улучшения равномерности последовательно с полосковыми эмиттерами в гребенчатой структуре или полосками в многоэмиттерной структуре включаются резисторы, ограничивающие ток при прямом включении эмиттерного перехода. Для борьбы со вторичным пробоем при обратном включении эмиттерного перехода следует затруднить развитие первичного (лавинного) пробоя коллекторного перехода. С этой целью эпитаксиальный высокоомный слой коллекторной области делают достаточно толстым. Следует также снижать тепловое сопротивление участка коллекторный переход – корпус. Параметры биполярных СВЧ транзисторов. Основными параметрами являются рабочая частота, коэффициент усиления по мощности, выходная мощность, КПД и коэффициент шума. При этом коэффициент шума важен только для маломощных (малошумящих) транзисторов, а КПД — для мощных СВЧ транзисторов. На граничной частоте fгр, при которой коэффициент передач по току в схеме с общим эмиттером равен единице, имеется еще значительное усиление по мощности. Поэтому дополнительно используется характеристическая частота fmax — максимальная частота генерации, на которой коэффициент усиления по мощности равен единице при условии компенсации действия внутренней обратной связи (без внесения потерь) и согласования на входе и выходе. В этом случае:
где r’б — объемное сопротивление базы; Ск — емкость коллекторного перехода; α0 — коэффициент передачи тока эмиттера(h21б). Если ширины эмиттерных, базбвых полосок и промежутков между ними одинаковы и равны s, длина l, а удельные (на единицу площади) сопротивление базы r0 и емкость коллектора С0, то r’Б ≈ r0s/l, Cк ≈ С0sl. Поэтому (5.6) приводится к виду: Следовательно, fmax увеличивается с уменьшением размера s. Это подтверждает необходимость уменьшения ширины полосок и зазоров в транзисторных структурах. Зависимость коэффициента шума от частоты показана рис. 5.7 горизонтальный участок кривой объясняется в основном тепловыми шумами объемного сопротивления базы r'б. Чем выше граничная частота транзистора fгр, тем протяженней участок кривой с наименьшим коэффициентом шума. Коэффициент шума зависит также от сопротивления источника сигнала, при этом существует оптимальное сопротивление при котором Kш достигает минимального значения. Существует также оптимальное значение тока эмиттера. Следует отметить, что условия, при которых коэффициент шума имеет минимальное значение, могут не совпадать с условиями получения максимального коэффициента усиления. Рис. 5.7 Рис. 5.8 На рис. 5.8 приведены для различных частот значения коэффициентов усиления Ку и шума Кш маломощных биполярных транзисторов с минимальным коэффициентом шума (БТ1) и с максимальным коэффициентом усиления (БТ2). В диапазоне частот 4 — 8 ГГц Кш min =2÷4 дБ, а Ку max = 5 ÷ 3 дБ. Усилители на малошумящих биполярных транзисторах конкурируют с малошумящими ЛБВ и превосходят последние по шумовым свойствам, габаритам, массе и долговечности.Выходная мощность мощных биполярных транзисторов при переходе от 1 до 4 ГГц падает от 35 — 40 до 5 Вт. Коэффициенты усиления в этом диапазоне составляют 10 — 5 дБ. Применение в транзисторных СВЧ генераторах варикапов или ферритовых элементов для электрической перестройки частоты позволяет заменять ими лампы обратной волны. Генераторы с варикапами обладают большой скоростью, но малой линейностью перестройки, например ±10%. Если в качестве феррита используется железо-иттриевый гранат (ЖИГ), то линейность перестройки высокая (примерно ±0,3%), но скорость перестройки мала. Диапазон электрической перестройки частоты транзисторных СВЧ генераторов достигает октавы. назад | оглавление | вперёд |