Приборы СВЧ и ОД |
Глава 5. Полупроводниковые приборы и транзисторы СВЧ. |
назад | оглавление | вперёд |
5.6 Полевые СВЧ транзисторы В последние годы возросла роль полевых транзисторов в СВЧ диапазоне, но сравнению с биполярными транзисторами в связи с разработкой полевых транзисторов с барьером Шотки на арсениде галлия. Устройство такого, транзистора показано на рис. 5.9. Затвор представляет собой барьер Шотки, изготовленный на эпитаксиальной пленке из арсенида галлия n-типа. Пленка выращивается на полуизолирующей подложке из того же материала. Затвор, расположенный между истоком и стоком, имеет обычно конфигурацию замкнутого кольца или квадрата. Характерные размеры: ширина затвора 0,2 – 2 мм, длина затвора 0,5 – 2 мкм, толщина эпитаксиальной пленки 0,15 – 0,5 мкм. Для получения омических контактов истока и стока используются сплавы на основе золота и серебра с соответствующими легирующими добавками. Барьер Шотки получают нанесением металлов (платина, хром, никель, молибден и др.) или сплавов. Рис. 5.9 Резкое улучшение частотных свойств полевых транзисторов произошло благодаря применению арсенида галлия с высокой подвижностью электронов, уменьшению длины затвора до 1 мкм и использованию более тонких и более высоколегированных эпитаксиальных пленок арсенида галлия. Для транзисторов с малой длиной канала частота fmax, на которой коэффициент усиления по мощности равен единице, определяется минимально возможным значением времени пролета τmin, т. е.
Значение τmin соответствует максимальной скорости носителей – скорости насыщения υн , поэтому при длине канала L τ= =L/υн , а из (5.6) Следовательно, GaAs, имеющий большее значение υн, чем у кремния и германия, является предпочтительным материалом для изготовления полевых транзисторов. Уменьшение длины затвора приводит к уменьшению времени пролета электронов в канале и к снижению емкости затвора. Эта емкость может быть также уменьшена изготовлением полуизолирующего слоя между затвором и эпитаксиальной пленкой арсенида галлия (каналом). Важным направлением в разработке маломощных полевых транзисторов с барьером Шотки на арсениде галлия является снижение коэффициента шума. Основные источники шума в этом транзисторе — тепловой шум в канале, индуцированный шум затвора и шум паразитных (пассивных) элементов. Тепловой шум в канале — это тепловой шум сопротивления проводящей части канала. Индуцированный шум затвора является следствием шума в канале, так как любая флуктуация потенциала в канале вызывает флуктуацию напряжения между затвором и каналом. Эти шумы при коротких каналах сильно коррелированны (коэффициент корреляции близок к единице). Шумы пассивных элементов связаны с сопротивлением затвора и истока и по своей природе тепловые. Так как шумы в активной области полевых транзисторов с барьером Шотки очень малы, то шумы пассивных элементов дают больший относительный вклад в общий шум, чем в биполярных транзисторах. Особенностью полевых транзисторов является большое различие сопротивлений источника сигнала, необходимых для получения максимального коэффициента усиления и минимального коэффициента шума. Это приводит к тому, что при минимальном коэффициенте шума коэффициент усиления примерно в 2 раза меньше максимально возможного. Однако в этом случае коэффициент усиления еще достаточно велик (8 – 15 дБ). Необходимо отметить, что существует также трудность согласования полевого транзистора со стандартным СВЧ трактом, особенно на частотах ниже 1 – 2 ГГц. В связи с этим приходится увеличивать ширину затвора, хотя последнее и приводит к увеличению емкости и сопротивления металлизации затвора. Существуют полевые транзисторы с коэффициентом шума Кш=З,7 дБ и усиления Ку=12,8 дБ на частоте 10 ГГц. Длина затвора этих транзисторов 0,5 мкм, а ширина 200 мкм. Имеются приборы, у которых Кш=2,6 дБ на частоте 4 ГГц (длина затвора 1,5 мкм, ширина – 1,8 мм). Рис. 5.10 На рис. 5.10 сравниваются коэффициенты усиления Ку и шума Кш полевых транзисторов с барьером Шотки (ПТБШ) и биполярных транзисторов с минимальным коэффициентом шума (БТ1) и максимальным коэффициентом усиления (БТ2). Для мощных полевых транзисторов требование низкого уровня шума не существенно. Применение арсенида галлия с большой шириной запрещенной зоны (1,4 эВ) позволяет повысить рабочую температуру вплоть до 350°С. В мощных полевых транзисторах необходимо обеспечить высокое напряжение пробоя затвора, низкоомные контакты истока и стока, а также возможно большее значение периметра истока. Повышение напряжения пробоя достигается использованием умеренного легирования области канала: Применение многоканальных структур обеспечивает повышение мощности полевых транзисторов. Созданы варианты мощных многоканальных полевых транзисторов с управляемым p–n–переходом с горизонтальной и вертикальной структурами. В транзисторах с горизонтальной структурой каналы располагаются параллельно полупроводниковой подложке, как на рис. 1, а в транзисторах с вертикальной структурой они перпендикулярны плоскости подложки. Мощность полевых транзисторов на арсениде галлия с барьером Шотки уже превышает мощность биполярных транзисторов: 1,6 Вт и КПД 45% на частоте 8 ГГц. Ожидается, что в трехсантиметровом диапазоне волн будет получена мощность 10 Вт. Эти транзисторы становятся конкурентами с ЛБВ, имея перед последними преимущество в габаритах, КПД и простоте источников питания. Наибольшее применение полевые транзисторы на GaAs с барьером Шотки нашли в малошумящих СВЧ усилителях. В диапазоне 4 – 20 ГГц они являются лучшими по шумовым и усилительным характеристикам, чем другие приборы того же назначения. Большой динамический диапазон и хорошие шумовые характеристики позволяют использовать их в смесителях. В последнее время наметилась тенденция к широкому внедрению полевых транзисторов с барьером Шотки в усилителях, предназначенных для замены ламп бегущей волны и в параметрических усилителях. Низкий коэффициент шума, малая пульсация коэффициента усиления (0,05 дБ на 10 МГц), небольшие изменения групповой задержки этих транзисторов позволяют произвести замену ЛБВ в телевизионной системе с частотной модуляцией. В последнее время значительный интерес проявляется к охлаждаемым усилителям на полевых транзисторах из GaAs с барьером Шотки. Так как шумы в этих приборах в основном имеют тепловую природу, то охлаждение приводит к существенному уменьшению коэффициента шума. При этом, в отличие от биполярных транзисторов, коэффициент усиления увеличивается. Трехкаскадный усилитель для спутниковой связи США в диапазоне 11,7–12,2 ГГц имеет при комнатной температуре коэффициент шума 5,3 дБ, а коэффициент усиления 18 дБ. Охлаждение усилителя до 40 К снижает Кш до 1,6 дБ и увеличивает Ку до 31 дБ, что сравнимо с параметрами неохлаждаемых параметрических усилителей. Малошумящие усилители на полевых транзисторах из GaAs с барьером Шотки по сравнению с параметрическими усилителями характеризуются простотой настройки, высоким постоянством усиления, большой мощностью насыщения. Контрольные вопросы.
назад | оглавление | вперёд |